direct product, metabelian, nilpotent (class 2), monomial
Aliases: C24×He3, (C2×C62)⋊8C6, C62⋊15(C2×C6), (C2×C6).39C62, C6.16(C2×C62), C32⋊3(C23×C6), (C22×C62)⋊3C3, C3.1(C22×C62), (C23×C6).16C32, (C3×C6)⋊3(C22×C6), (C22×C6).24(C3×C6), SmallGroup(432,563)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C24×He3
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=e3=f3=g3=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, bc=cb, bd=db, be=eb, bf=fb, bg=gb, cd=dc, ce=ec, cf=fc, cg=gc, de=ed, df=fd, dg=gd, ef=fe, geg-1=ef-1, fg=gf >
Subgroups: 1273 in 737 conjugacy classes, 469 normal (6 characteristic)
C1, C2, C3, C3, C22, C6, C6, C23, C32, C2×C6, C2×C6, C24, C3×C6, C22×C6, C22×C6, He3, C62, C23×C6, C23×C6, C2×He3, C2×C62, C22×He3, C22×C62, C23×He3, C24×He3
Quotients: C1, C2, C3, C22, C6, C23, C32, C2×C6, C24, C3×C6, C22×C6, He3, C62, C23×C6, C2×He3, C2×C62, C22×He3, C22×C62, C23×He3, C24×He3
(1 31)(2 17)(3 19)(4 7)(5 12)(6 8)(9 24)(10 45)(11 44)(13 37)(14 29)(15 30)(16 43)(18 27)(20 41)(21 42)(22 26)(23 25)(28 40)(32 47)(33 48)(34 46)(35 39)(36 38)(49 71)(50 72)(51 70)(52 105)(53 103)(54 104)(55 79)(56 80)(57 81)(58 73)(59 74)(60 75)(61 82)(62 83)(63 84)(64 142)(65 143)(66 144)(67 107)(68 108)(69 106)(76 100)(77 101)(78 102)(85 132)(86 130)(87 131)(88 98)(89 99)(90 97)(91 115)(92 116)(93 117)(94 114)(95 112)(96 113)(109 138)(110 136)(111 137)(118 121)(119 122)(120 123)(124 134)(125 135)(126 133)(127 141)(128 139)(129 140)
(1 3)(2 48)(4 13)(5 14)(6 15)(7 37)(8 30)(9 20)(10 38)(11 39)(12 29)(16 46)(17 33)(18 32)(19 31)(21 22)(23 28)(24 41)(25 40)(26 42)(27 47)(34 43)(35 44)(36 45)(49 129)(50 127)(51 128)(52 75)(53 73)(54 74)(55 64)(56 65)(57 66)(58 103)(59 104)(60 105)(61 106)(62 107)(63 108)(67 83)(68 84)(69 82)(70 139)(71 140)(72 141)(76 115)(77 116)(78 117)(79 142)(80 143)(81 144)(85 97)(86 98)(87 99)(88 130)(89 131)(90 132)(91 100)(92 101)(93 102)(94 133)(95 134)(96 135)(109 118)(110 119)(111 120)(112 124)(113 125)(114 126)(121 138)(122 136)(123 137)
(1 7)(2 30)(3 37)(4 31)(5 32)(6 33)(8 48)(9 38)(10 20)(11 21)(12 47)(13 19)(14 18)(15 17)(16 28)(22 39)(23 46)(24 36)(25 34)(26 35)(27 29)(40 43)(41 45)(42 44)(49 74)(50 75)(51 73)(52 127)(53 128)(54 129)(55 82)(56 83)(57 84)(58 70)(59 71)(60 72)(61 79)(62 80)(63 81)(64 69)(65 67)(66 68)(76 88)(77 89)(78 90)(85 93)(86 91)(87 92)(94 138)(95 136)(96 137)(97 102)(98 100)(99 101)(103 139)(104 140)(105 141)(106 142)(107 143)(108 144)(109 114)(110 112)(111 113)(115 130)(116 131)(117 132)(118 126)(119 124)(120 125)(121 133)(122 134)(123 135)
(1 46)(2 11)(3 16)(4 25)(5 24)(6 26)(7 23)(8 22)(9 12)(10 27)(13 40)(14 41)(15 42)(17 44)(18 45)(19 43)(20 29)(21 30)(28 37)(31 34)(32 36)(33 35)(38 47)(39 48)(49 99)(50 97)(51 98)(52 93)(53 91)(54 92)(55 114)(56 112)(57 113)(58 76)(59 77)(60 78)(61 138)(62 136)(63 137)(64 126)(65 124)(66 125)(67 119)(68 120)(69 118)(70 88)(71 89)(72 90)(73 100)(74 101)(75 102)(79 94)(80 95)(81 96)(82 109)(83 110)(84 111)(85 127)(86 128)(87 129)(103 115)(104 116)(105 117)(106 121)(107 122)(108 123)(130 139)(131 140)(132 141)(133 142)(134 143)(135 144)
(49 50 51)(52 53 54)(55 56 57)(58 59 60)(61 62 63)(64 65 66)(67 68 69)(70 71 72)(73 74 75)(76 77 78)(79 80 81)(82 83 84)(85 86 87)(88 89 90)(91 92 93)(94 95 96)(97 98 99)(100 101 102)(103 104 105)(106 107 108)(109 110 111)(112 113 114)(115 116 117)(118 119 120)(121 122 123)(124 125 126)(127 128 129)(130 131 132)(133 134 135)(136 137 138)(139 140 141)(142 143 144)
(1 48 47)(2 27 3)(4 6 5)(7 8 12)(9 23 22)(10 16 11)(13 15 14)(17 18 19)(20 28 21)(24 25 26)(29 37 30)(31 33 32)(34 35 36)(38 46 39)(40 42 41)(43 44 45)(49 50 51)(52 53 54)(55 57 56)(58 59 60)(61 63 62)(64 66 65)(67 69 68)(70 71 72)(73 74 75)(76 77 78)(79 81 80)(82 84 83)(85 86 87)(88 89 90)(91 92 93)(94 96 95)(97 98 99)(100 101 102)(103 104 105)(106 108 107)(109 111 110)(112 114 113)(115 116 117)(118 120 119)(121 123 122)(124 126 125)(127 128 129)(130 131 132)(133 135 134)(136 138 137)(139 140 141)(142 144 143)
(1 57 50)(2 65 128)(3 66 127)(4 63 60)(5 61 59)(6 62 58)(7 84 75)(8 83 73)(9 109 101)(10 126 87)(11 124 86)(12 82 74)(13 108 105)(14 106 104)(15 107 103)(16 125 85)(17 143 139)(18 142 140)(19 144 141)(20 118 92)(21 119 91)(22 110 100)(23 111 102)(24 138 77)(25 137 78)(26 136 76)(27 64 129)(28 120 93)(29 69 54)(30 67 53)(31 81 72)(32 79 71)(33 80 70)(34 96 90)(35 95 88)(36 94 89)(37 68 52)(38 114 99)(39 112 98)(40 123 117)(41 121 116)(42 122 115)(43 135 132)(44 134 130)(45 133 131)(46 113 97)(47 55 49)(48 56 51)
G:=sub<Sym(144)| (1,31)(2,17)(3,19)(4,7)(5,12)(6,8)(9,24)(10,45)(11,44)(13,37)(14,29)(15,30)(16,43)(18,27)(20,41)(21,42)(22,26)(23,25)(28,40)(32,47)(33,48)(34,46)(35,39)(36,38)(49,71)(50,72)(51,70)(52,105)(53,103)(54,104)(55,79)(56,80)(57,81)(58,73)(59,74)(60,75)(61,82)(62,83)(63,84)(64,142)(65,143)(66,144)(67,107)(68,108)(69,106)(76,100)(77,101)(78,102)(85,132)(86,130)(87,131)(88,98)(89,99)(90,97)(91,115)(92,116)(93,117)(94,114)(95,112)(96,113)(109,138)(110,136)(111,137)(118,121)(119,122)(120,123)(124,134)(125,135)(126,133)(127,141)(128,139)(129,140), (1,3)(2,48)(4,13)(5,14)(6,15)(7,37)(8,30)(9,20)(10,38)(11,39)(12,29)(16,46)(17,33)(18,32)(19,31)(21,22)(23,28)(24,41)(25,40)(26,42)(27,47)(34,43)(35,44)(36,45)(49,129)(50,127)(51,128)(52,75)(53,73)(54,74)(55,64)(56,65)(57,66)(58,103)(59,104)(60,105)(61,106)(62,107)(63,108)(67,83)(68,84)(69,82)(70,139)(71,140)(72,141)(76,115)(77,116)(78,117)(79,142)(80,143)(81,144)(85,97)(86,98)(87,99)(88,130)(89,131)(90,132)(91,100)(92,101)(93,102)(94,133)(95,134)(96,135)(109,118)(110,119)(111,120)(112,124)(113,125)(114,126)(121,138)(122,136)(123,137), (1,7)(2,30)(3,37)(4,31)(5,32)(6,33)(8,48)(9,38)(10,20)(11,21)(12,47)(13,19)(14,18)(15,17)(16,28)(22,39)(23,46)(24,36)(25,34)(26,35)(27,29)(40,43)(41,45)(42,44)(49,74)(50,75)(51,73)(52,127)(53,128)(54,129)(55,82)(56,83)(57,84)(58,70)(59,71)(60,72)(61,79)(62,80)(63,81)(64,69)(65,67)(66,68)(76,88)(77,89)(78,90)(85,93)(86,91)(87,92)(94,138)(95,136)(96,137)(97,102)(98,100)(99,101)(103,139)(104,140)(105,141)(106,142)(107,143)(108,144)(109,114)(110,112)(111,113)(115,130)(116,131)(117,132)(118,126)(119,124)(120,125)(121,133)(122,134)(123,135), (1,46)(2,11)(3,16)(4,25)(5,24)(6,26)(7,23)(8,22)(9,12)(10,27)(13,40)(14,41)(15,42)(17,44)(18,45)(19,43)(20,29)(21,30)(28,37)(31,34)(32,36)(33,35)(38,47)(39,48)(49,99)(50,97)(51,98)(52,93)(53,91)(54,92)(55,114)(56,112)(57,113)(58,76)(59,77)(60,78)(61,138)(62,136)(63,137)(64,126)(65,124)(66,125)(67,119)(68,120)(69,118)(70,88)(71,89)(72,90)(73,100)(74,101)(75,102)(79,94)(80,95)(81,96)(82,109)(83,110)(84,111)(85,127)(86,128)(87,129)(103,115)(104,116)(105,117)(106,121)(107,122)(108,123)(130,139)(131,140)(132,141)(133,142)(134,143)(135,144), (49,50,51)(52,53,54)(55,56,57)(58,59,60)(61,62,63)(64,65,66)(67,68,69)(70,71,72)(73,74,75)(76,77,78)(79,80,81)(82,83,84)(85,86,87)(88,89,90)(91,92,93)(94,95,96)(97,98,99)(100,101,102)(103,104,105)(106,107,108)(109,110,111)(112,113,114)(115,116,117)(118,119,120)(121,122,123)(124,125,126)(127,128,129)(130,131,132)(133,134,135)(136,137,138)(139,140,141)(142,143,144), (1,48,47)(2,27,3)(4,6,5)(7,8,12)(9,23,22)(10,16,11)(13,15,14)(17,18,19)(20,28,21)(24,25,26)(29,37,30)(31,33,32)(34,35,36)(38,46,39)(40,42,41)(43,44,45)(49,50,51)(52,53,54)(55,57,56)(58,59,60)(61,63,62)(64,66,65)(67,69,68)(70,71,72)(73,74,75)(76,77,78)(79,81,80)(82,84,83)(85,86,87)(88,89,90)(91,92,93)(94,96,95)(97,98,99)(100,101,102)(103,104,105)(106,108,107)(109,111,110)(112,114,113)(115,116,117)(118,120,119)(121,123,122)(124,126,125)(127,128,129)(130,131,132)(133,135,134)(136,138,137)(139,140,141)(142,144,143), (1,57,50)(2,65,128)(3,66,127)(4,63,60)(5,61,59)(6,62,58)(7,84,75)(8,83,73)(9,109,101)(10,126,87)(11,124,86)(12,82,74)(13,108,105)(14,106,104)(15,107,103)(16,125,85)(17,143,139)(18,142,140)(19,144,141)(20,118,92)(21,119,91)(22,110,100)(23,111,102)(24,138,77)(25,137,78)(26,136,76)(27,64,129)(28,120,93)(29,69,54)(30,67,53)(31,81,72)(32,79,71)(33,80,70)(34,96,90)(35,95,88)(36,94,89)(37,68,52)(38,114,99)(39,112,98)(40,123,117)(41,121,116)(42,122,115)(43,135,132)(44,134,130)(45,133,131)(46,113,97)(47,55,49)(48,56,51)>;
G:=Group( (1,31)(2,17)(3,19)(4,7)(5,12)(6,8)(9,24)(10,45)(11,44)(13,37)(14,29)(15,30)(16,43)(18,27)(20,41)(21,42)(22,26)(23,25)(28,40)(32,47)(33,48)(34,46)(35,39)(36,38)(49,71)(50,72)(51,70)(52,105)(53,103)(54,104)(55,79)(56,80)(57,81)(58,73)(59,74)(60,75)(61,82)(62,83)(63,84)(64,142)(65,143)(66,144)(67,107)(68,108)(69,106)(76,100)(77,101)(78,102)(85,132)(86,130)(87,131)(88,98)(89,99)(90,97)(91,115)(92,116)(93,117)(94,114)(95,112)(96,113)(109,138)(110,136)(111,137)(118,121)(119,122)(120,123)(124,134)(125,135)(126,133)(127,141)(128,139)(129,140), (1,3)(2,48)(4,13)(5,14)(6,15)(7,37)(8,30)(9,20)(10,38)(11,39)(12,29)(16,46)(17,33)(18,32)(19,31)(21,22)(23,28)(24,41)(25,40)(26,42)(27,47)(34,43)(35,44)(36,45)(49,129)(50,127)(51,128)(52,75)(53,73)(54,74)(55,64)(56,65)(57,66)(58,103)(59,104)(60,105)(61,106)(62,107)(63,108)(67,83)(68,84)(69,82)(70,139)(71,140)(72,141)(76,115)(77,116)(78,117)(79,142)(80,143)(81,144)(85,97)(86,98)(87,99)(88,130)(89,131)(90,132)(91,100)(92,101)(93,102)(94,133)(95,134)(96,135)(109,118)(110,119)(111,120)(112,124)(113,125)(114,126)(121,138)(122,136)(123,137), (1,7)(2,30)(3,37)(4,31)(5,32)(6,33)(8,48)(9,38)(10,20)(11,21)(12,47)(13,19)(14,18)(15,17)(16,28)(22,39)(23,46)(24,36)(25,34)(26,35)(27,29)(40,43)(41,45)(42,44)(49,74)(50,75)(51,73)(52,127)(53,128)(54,129)(55,82)(56,83)(57,84)(58,70)(59,71)(60,72)(61,79)(62,80)(63,81)(64,69)(65,67)(66,68)(76,88)(77,89)(78,90)(85,93)(86,91)(87,92)(94,138)(95,136)(96,137)(97,102)(98,100)(99,101)(103,139)(104,140)(105,141)(106,142)(107,143)(108,144)(109,114)(110,112)(111,113)(115,130)(116,131)(117,132)(118,126)(119,124)(120,125)(121,133)(122,134)(123,135), (1,46)(2,11)(3,16)(4,25)(5,24)(6,26)(7,23)(8,22)(9,12)(10,27)(13,40)(14,41)(15,42)(17,44)(18,45)(19,43)(20,29)(21,30)(28,37)(31,34)(32,36)(33,35)(38,47)(39,48)(49,99)(50,97)(51,98)(52,93)(53,91)(54,92)(55,114)(56,112)(57,113)(58,76)(59,77)(60,78)(61,138)(62,136)(63,137)(64,126)(65,124)(66,125)(67,119)(68,120)(69,118)(70,88)(71,89)(72,90)(73,100)(74,101)(75,102)(79,94)(80,95)(81,96)(82,109)(83,110)(84,111)(85,127)(86,128)(87,129)(103,115)(104,116)(105,117)(106,121)(107,122)(108,123)(130,139)(131,140)(132,141)(133,142)(134,143)(135,144), (49,50,51)(52,53,54)(55,56,57)(58,59,60)(61,62,63)(64,65,66)(67,68,69)(70,71,72)(73,74,75)(76,77,78)(79,80,81)(82,83,84)(85,86,87)(88,89,90)(91,92,93)(94,95,96)(97,98,99)(100,101,102)(103,104,105)(106,107,108)(109,110,111)(112,113,114)(115,116,117)(118,119,120)(121,122,123)(124,125,126)(127,128,129)(130,131,132)(133,134,135)(136,137,138)(139,140,141)(142,143,144), (1,48,47)(2,27,3)(4,6,5)(7,8,12)(9,23,22)(10,16,11)(13,15,14)(17,18,19)(20,28,21)(24,25,26)(29,37,30)(31,33,32)(34,35,36)(38,46,39)(40,42,41)(43,44,45)(49,50,51)(52,53,54)(55,57,56)(58,59,60)(61,63,62)(64,66,65)(67,69,68)(70,71,72)(73,74,75)(76,77,78)(79,81,80)(82,84,83)(85,86,87)(88,89,90)(91,92,93)(94,96,95)(97,98,99)(100,101,102)(103,104,105)(106,108,107)(109,111,110)(112,114,113)(115,116,117)(118,120,119)(121,123,122)(124,126,125)(127,128,129)(130,131,132)(133,135,134)(136,138,137)(139,140,141)(142,144,143), (1,57,50)(2,65,128)(3,66,127)(4,63,60)(5,61,59)(6,62,58)(7,84,75)(8,83,73)(9,109,101)(10,126,87)(11,124,86)(12,82,74)(13,108,105)(14,106,104)(15,107,103)(16,125,85)(17,143,139)(18,142,140)(19,144,141)(20,118,92)(21,119,91)(22,110,100)(23,111,102)(24,138,77)(25,137,78)(26,136,76)(27,64,129)(28,120,93)(29,69,54)(30,67,53)(31,81,72)(32,79,71)(33,80,70)(34,96,90)(35,95,88)(36,94,89)(37,68,52)(38,114,99)(39,112,98)(40,123,117)(41,121,116)(42,122,115)(43,135,132)(44,134,130)(45,133,131)(46,113,97)(47,55,49)(48,56,51) );
G=PermutationGroup([[(1,31),(2,17),(3,19),(4,7),(5,12),(6,8),(9,24),(10,45),(11,44),(13,37),(14,29),(15,30),(16,43),(18,27),(20,41),(21,42),(22,26),(23,25),(28,40),(32,47),(33,48),(34,46),(35,39),(36,38),(49,71),(50,72),(51,70),(52,105),(53,103),(54,104),(55,79),(56,80),(57,81),(58,73),(59,74),(60,75),(61,82),(62,83),(63,84),(64,142),(65,143),(66,144),(67,107),(68,108),(69,106),(76,100),(77,101),(78,102),(85,132),(86,130),(87,131),(88,98),(89,99),(90,97),(91,115),(92,116),(93,117),(94,114),(95,112),(96,113),(109,138),(110,136),(111,137),(118,121),(119,122),(120,123),(124,134),(125,135),(126,133),(127,141),(128,139),(129,140)], [(1,3),(2,48),(4,13),(5,14),(6,15),(7,37),(8,30),(9,20),(10,38),(11,39),(12,29),(16,46),(17,33),(18,32),(19,31),(21,22),(23,28),(24,41),(25,40),(26,42),(27,47),(34,43),(35,44),(36,45),(49,129),(50,127),(51,128),(52,75),(53,73),(54,74),(55,64),(56,65),(57,66),(58,103),(59,104),(60,105),(61,106),(62,107),(63,108),(67,83),(68,84),(69,82),(70,139),(71,140),(72,141),(76,115),(77,116),(78,117),(79,142),(80,143),(81,144),(85,97),(86,98),(87,99),(88,130),(89,131),(90,132),(91,100),(92,101),(93,102),(94,133),(95,134),(96,135),(109,118),(110,119),(111,120),(112,124),(113,125),(114,126),(121,138),(122,136),(123,137)], [(1,7),(2,30),(3,37),(4,31),(5,32),(6,33),(8,48),(9,38),(10,20),(11,21),(12,47),(13,19),(14,18),(15,17),(16,28),(22,39),(23,46),(24,36),(25,34),(26,35),(27,29),(40,43),(41,45),(42,44),(49,74),(50,75),(51,73),(52,127),(53,128),(54,129),(55,82),(56,83),(57,84),(58,70),(59,71),(60,72),(61,79),(62,80),(63,81),(64,69),(65,67),(66,68),(76,88),(77,89),(78,90),(85,93),(86,91),(87,92),(94,138),(95,136),(96,137),(97,102),(98,100),(99,101),(103,139),(104,140),(105,141),(106,142),(107,143),(108,144),(109,114),(110,112),(111,113),(115,130),(116,131),(117,132),(118,126),(119,124),(120,125),(121,133),(122,134),(123,135)], [(1,46),(2,11),(3,16),(4,25),(5,24),(6,26),(7,23),(8,22),(9,12),(10,27),(13,40),(14,41),(15,42),(17,44),(18,45),(19,43),(20,29),(21,30),(28,37),(31,34),(32,36),(33,35),(38,47),(39,48),(49,99),(50,97),(51,98),(52,93),(53,91),(54,92),(55,114),(56,112),(57,113),(58,76),(59,77),(60,78),(61,138),(62,136),(63,137),(64,126),(65,124),(66,125),(67,119),(68,120),(69,118),(70,88),(71,89),(72,90),(73,100),(74,101),(75,102),(79,94),(80,95),(81,96),(82,109),(83,110),(84,111),(85,127),(86,128),(87,129),(103,115),(104,116),(105,117),(106,121),(107,122),(108,123),(130,139),(131,140),(132,141),(133,142),(134,143),(135,144)], [(49,50,51),(52,53,54),(55,56,57),(58,59,60),(61,62,63),(64,65,66),(67,68,69),(70,71,72),(73,74,75),(76,77,78),(79,80,81),(82,83,84),(85,86,87),(88,89,90),(91,92,93),(94,95,96),(97,98,99),(100,101,102),(103,104,105),(106,107,108),(109,110,111),(112,113,114),(115,116,117),(118,119,120),(121,122,123),(124,125,126),(127,128,129),(130,131,132),(133,134,135),(136,137,138),(139,140,141),(142,143,144)], [(1,48,47),(2,27,3),(4,6,5),(7,8,12),(9,23,22),(10,16,11),(13,15,14),(17,18,19),(20,28,21),(24,25,26),(29,37,30),(31,33,32),(34,35,36),(38,46,39),(40,42,41),(43,44,45),(49,50,51),(52,53,54),(55,57,56),(58,59,60),(61,63,62),(64,66,65),(67,69,68),(70,71,72),(73,74,75),(76,77,78),(79,81,80),(82,84,83),(85,86,87),(88,89,90),(91,92,93),(94,96,95),(97,98,99),(100,101,102),(103,104,105),(106,108,107),(109,111,110),(112,114,113),(115,116,117),(118,120,119),(121,123,122),(124,126,125),(127,128,129),(130,131,132),(133,135,134),(136,138,137),(139,140,141),(142,144,143)], [(1,57,50),(2,65,128),(3,66,127),(4,63,60),(5,61,59),(6,62,58),(7,84,75),(8,83,73),(9,109,101),(10,126,87),(11,124,86),(12,82,74),(13,108,105),(14,106,104),(15,107,103),(16,125,85),(17,143,139),(18,142,140),(19,144,141),(20,118,92),(21,119,91),(22,110,100),(23,111,102),(24,138,77),(25,137,78),(26,136,76),(27,64,129),(28,120,93),(29,69,54),(30,67,53),(31,81,72),(32,79,71),(33,80,70),(34,96,90),(35,95,88),(36,94,89),(37,68,52),(38,114,99),(39,112,98),(40,123,117),(41,121,116),(42,122,115),(43,135,132),(44,134,130),(45,133,131),(46,113,97),(47,55,49),(48,56,51)]])
176 conjugacy classes
class | 1 | 2A | ··· | 2O | 3A | 3B | 3C | ··· | 3J | 6A | ··· | 6AD | 6AE | ··· | 6ET |
order | 1 | 2 | ··· | 2 | 3 | 3 | 3 | ··· | 3 | 6 | ··· | 6 | 6 | ··· | 6 |
size | 1 | 1 | ··· | 1 | 1 | 1 | 3 | ··· | 3 | 1 | ··· | 1 | 3 | ··· | 3 |
176 irreducible representations
dim | 1 | 1 | 1 | 1 | 3 | 3 |
type | + | + | ||||
image | C1 | C2 | C3 | C6 | He3 | C2×He3 |
kernel | C24×He3 | C23×He3 | C22×C62 | C2×C62 | C24 | C23 |
# reps | 1 | 15 | 8 | 120 | 2 | 30 |
Matrix representation of C24×He3 ►in GL7(𝔽7)
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 6 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 6 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
6 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 6 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 6 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
6 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 6 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 2 | 3 | 2 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 6 | 6 | 3 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(7,GF(7))| [1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[6,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[6,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,1,0,2,0,0,0,0,0,4,3,0,0,0,0,0,0,2],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,6,0,0,0,0,0,1,6,0,0,0,0,0,0,3,1] >;
C24×He3 in GAP, Magma, Sage, TeX
C_2^4\times {\rm He}_3
% in TeX
G:=Group("C2^4xHe3");
// GroupNames label
G:=SmallGroup(432,563);
// by ID
G=gap.SmallGroup(432,563);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,537]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=e^3=f^3=g^3=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,d*e=e*d,d*f=f*d,d*g=g*d,e*f=f*e,g*e*g^-1=e*f^-1,f*g=g*f>;
// generators/relations